

Decision-making in flight with different convective weather information sources:

Preliminary Results
from
the Langley CoWS Experiment
(COnvective Weather Sources)

Jim Chamberlain Kara Latorella
Crew Systems & Operations Branch Crew/Vehicle Integration Branch
NASA Langley Research Center

Outline

- CoWS Experimental Apparatus Development
 - Ground Station
 - B200 Aircraft
 - Airborne System
- CoWS Experiment
 - Experimental Conditions & Objectives
 - Procedures
 - Preliminary Results
 - Conclusions
 - The Future of CoWS

Experimental Apparatus

Approach

Use CRA-developed, removable tethereddisplay AWIN system in B200

Apparatus

- Honeywell CRA AWIN ground stations
- Langley B200 Super King Air
- Honeywell CRA tethered AWIN system

Ground Infrastructure

NAVRADIO VDL - 2 / 3 GROUNDSTATION TYPICAL INSTALLATION

Typical Honeywell CRA

AWIN Ground Station

- Satcom antenna & receiver
- Processor & power supply
- •VDL transmitter & antenna

Ruggedized, Compact, Self-Contained

AWIN Receiver/Processor at RTI/Hampton can record Wx

Test Range

- Five ground stations, 40nm radius
- Four destinations & flight paths

Antenna/Power Connections

Seat-Mounted Pallet

Tethered Displays

AWIN Display in B200

Softkeys

Brightness

AWIN Display Elements

CoWS Experiment

- Motivation
- Objectives
- Participants
- Experimental Design
- Experimental Protocol
- Preliminary Results
- Conclusions

Experimental Motivation

General aviation accident statistics

The hazards of convective weather

Aviation Weather INformation (AWIN) systems

Experimental Objectives

How do **GA pilots** use different weather information **sources** when **approaching convective** weather situations?

Sources

- Conventional aural (ATC, HIWAS, Flight watch),
- Out-the-window visual scene + aural
- AWIN display + aural

Effects

- Confidence, Workload, Information Sufficiency
- Situation awareness, decision quality, individual differences

<u>Participants</u>

- 8 Check-out, 12 Experimental, 6 reported here
- Subject Requirements
 - local GA pilots
 - instrument rating
 - 50-1000 cross-country or 250 1000 total flight-hours
 - Has not worked for a scheduled air-carrier in prior year
 - Has not participated in the RTI FISDL simulation study
- Subjects clustered by cross-country hours
 - low (135), medium (379), high (738) (p<.0001)
 - 4 teams of 3 subjects (one of each level)

Inflight Experimental Conditions

For each flight

	"IMC"	VMC
Without	Aural Cues	Aural
AWIN		+
		Window
With	Aural	Aural
AWIN	+	\
	Display	Distay
		Window

- For each subject (cue set condition)
 - 6 "proximity" observations of confidence
 - 1 observation of workload & information sufficiency
- Three flights per team

Experimental Conditions in B200

Presented at the NASA Weather Accident Prevention Workshop~ 2001 ~ Chamberlain & Latorella

Opaque covers for side windows & onboard radar

wedding, graduation, job interview

Flight Scenario

- Flying IFR, but in VMC
- NASA to destination, 1.5-2 hours
- Convective fronts, moderate⁺ intensity
- Approach front ~45°

- Aircraft Performance ~ small single-engine
 - Cruising Altitude = 14000', above haze layer
 - Cruising Speed ~ 170kts true airspeed
 - not radar-equipped, no deicing equipment
 - not pressurized, but does have Oxygen

Test range: 5 ground stations, 40nm radius

Experimental Protocol

Preflight

- Introduction to CoWS, assignment to conditions
- Mission, route, and regional information briefing
- Weather briefing
 - » DUATS text & graphics,
 - » Audiotaped FSS briefing, twice
 - » Review
 - » Preflight SA questionnaire
- Intervening tasks
 - » AWIN training, personality, risk, weather knowledge test

Flight

- Outbound phase
- Inbound phase
- Debriefing

In-flight Protocol

Outbound Protocol

Inbound Protocol

- Draw position & weather
- Inbound questionnaire
- Usability questionnaire

Preliminary Results - Confidence

- Summary of ANOVA
 - Cue set ~ Highly significant (p<.0001)
 - Proximity to weather ~ Not significant (p=.691)
 - Cue set X Proximity ~ Not significant (p=.275)

Confidence in Picture Ratings

- Pair-wise comparisons (LSD)_{3.5}
 - Aural v. Window (p<.0001)
 - Aural v. Display (p<.0001)
 - Window v. Display (p = .491)

<u>Preliminary Results</u> - <u>Information Sufficiency</u>

- Summary of ANOVA
 - Cue set ~ Significant (p<.061)
- Pair-wise comparisons (LSD)
 - Aural v. Display (p=.009)
 - Window v. Display (p=.094
 - Aural v. Window (p=.242)

- Summary of ANOVA
 - Peformance Rating
 - » Cue set ~ Significant (p<.091)</p>
 - » Subjects ~ Significant (p<.03)
 - Physical Rating
 - » Subjects ~ Significant (p<.02)</p>
- Pair-wise cue set comparisons (LSD)
 - Performance ~ not significant
 - » Trend: Aural < Display, Window
- Subjects did report that workload was similar to that when actually flying.

Conclusions

- Reliance on AWIN in IMC and close to hazards
 - As confident as visuals possibly over-confident
 - Less likely to seek information from ground sources
 - Perceived performance similar to window condition
 - Data is at least 6 minutes old, was as old as 30 minutes
- Implications: design, training, & use guidelines
 - » RTCA FIS-B Minimum Aviation System Performance Standards.
 - » Document: DO-267
 - » note added to indicate need for age v. timestamp
 - » Need more salient indication or alerting

The Future of CoWS

- Other Experimental Results
 - Full data set Effects of cues on inflight SA & decisions
 » proximity to convective frontal weather
 - Effects of individual characteristics
 » personality, risk tolerance, weather knowledge
 - Effects of weather graphics on preflight SA

- Usability Assessment of an available AWIN system
- Canned cues for subsequent comparative analysis
 - Onboard weather radar, AWIN radar mosaic,
 - Pilot observations, ground sources (ATC,FW, FSS),
 - HIWAS, video of external view.

CoWS Convective Weather Sources

Questions?